Nitric Oxide and Reactive Oxygen Species Coordinately Regulate the Germination of Puccinia striiformis f. sp. tritici Urediniospores

نویسندگان

  • Shuining Yin
  • Zhijuan Gao
  • Chenfang Wang
  • Lili Huang
  • Zhensheng Kang
  • Hongchang Zhang
چکیده

Nitric oxide (NO) and reactive oxygen species (ROS) function as signaling molecules in a number of critical signal transduction pathways in plants, including plant biotic interactions. In addition to the role of plant-derived NO and ROS in plant resistance, which has been well documented, pathogen-produced NO and ROS have recently emerged as important players in fungal development and pathogenesis. However, the effects of pathogenic fungi-derived NO and ROS on signaling pathways during fungal pre-infection development remain unknown. Here, using a combination of pharmacological approaches and confocal microscopy, we investigated the roles of NO and ROS during the germination of Puccinia striiformis Westend f. sp. tritici (Pst) the wheat stripe rust pathogen. Both NO and ROS have a crucial role in uredinial germination. The scavengers of NO and ROS delayed spore germination and decreased the lengths of germ tubes. A similar phenotype was produced after treatment with the promoter. However, the spores germinated and grew normally when the levels of NO and ROS were simultaneously elevated by the application of a promoter of NO and a donor of ROS. Confocal laser microscopy indicated that both NO and ROS preferentially localized at the germ pores and apexes of growing germ tubes when the ROS/NO ratio in the spores was maintained in a specific range. We concluded that both NO and ROS are critical signaling molecules in the pre-infection development of Pst and that the polar growth of the germ tube is coordinately regulated by NO and ROS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Two Different Sources of Durable Resistance and Susceptible Cultivar of Wheat to Stripe Rust (Puccinia striiformis f. sp. tritici)

A study was conducted to assess the durable resistance in a near isogenic line of spring wheat (Triticum aestivalis L.), possessing resistance gene Yr-18 to some isolates (race specific resistance) of stripe rust (Puccinia striiformis f. sp. tritici), namely Thatcher Yr-18 and durable resistance of an cultivar of spring wheat to all isolates of stripe rust (race non- specific resistance), namel...

متن کامل

A Novel Fungal Hyperparasite of Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust

Puccinia striiformis f. sp. tritici (Pst), the causal fungus of wheat stripe rust, was previously reported to be infected by Lecanicillium lecanii, Microdochium nivale and Typhula idahoensis. Here, we report a novel hyperparasite on Pst. This hyperparasitic fungus was identified as Cladosporium cladosporioides (Fresen.) GA de Vries based on morphological characteristics observed by light and sc...

متن کامل

Identification of a Novel Alternaria alternata Strain Able to Hyperparasitize Puccinia striiformis f. sp. tritici, the Causal Agent of Wheat Stripe Rust

The obligate bitrophic fungus Puccinia striiformis f. sp. tritici (Pst) causes stripe (yellow) rust on wheat worldwide. Here, we report a novel fungal strain able to hyperparasitize Pst. The strain was isolated from gray-colored rust pustules, and was identified as Alternaria alternata (Fr.: Fr.) keissler based on a combination of morphological characteristics and multi-locus (ITS, GAPDH, and R...

متن کامل

Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp. tritici

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is considered one of the most aggressive diseases to wheat production. In this study, we used an iTRAQ-based approach for the quantitative proteomic comparison of the incompatible Pst race CYR23 in infected and non-infected leaves of the wheat cultivar Suwon11. A total of 3,475 unique proteins were identified from three key...

متن کامل

The wheat WRKY transcription factors TaWRKY49 and TaWRKY62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis f. sp. tritici

WRKY transcription factors (TFs) play crucial roles in plant resistance responses to pathogens. Wheat stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a destructive disease of wheat (Triticum aestivum) worldwide. In this study, the two WRKY genes TaWRKY49 and TaWRKY62 were originally identified in association with high-temperature seedling-plant resistanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in microbiology

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016